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Abstract— The idle speed control is one of the most generic
and basic automotive control problems. In this paper, the engine
idle speed control problem comes down to optimization problem
with input and state constraints. The controller based the quasi-
infinite horizon nonlinear model predictive control (NMPC)
methodology is designed to regulate the engine speed as close as
possible to a reference value. The simulation results show that
the controller can improve the dynamic performance of system
and good control effect can be obtained as well as satisfying
the system constraints.

Index Terms— Engine idle speed control, system constraints,
nonlinear model predictive control, terminal region.

I. INTRODUCTION

The engine idle speed control is always a tough task in

the engine control. On the average, vehicles consume about

30 percent of their fuel in city driving during idling, and it

is expected that with increased traffic loads this percentage

will further increase in the future. The automotive exhaust

emissions CO and HC in idle state are about 70 percent

of total emission of pollutant. Therefore, it is important to

optimize vehicle and powertrain operations at idle, especially

with respect to often-conflicting requirements of improved

fuel economy, reduced emissions, guaranteed combustion

stability, and good noise, vibration and harshness quality.

Idle speed control goal is to maintain the engine speed

as close as possible to a reference engine speed despite

load torque disturbances(i.e. the air conditioning system, the

steering wheel servo-mechanism) and engagements and dis-

engagements of the transmission occurring when the driver

operates on the clutch. In order to achieve the best fuel econ-

omy, the reference engine speed is chosen at the minimum

value that yields acceptable combustion and emission quality,

and noise, vibration and harshness characteristics [1] [2].

So far, most control techniques have been used for the

engine idle speed control problem [1] [2] [3] [4], they include

Multivariable control, l1 control, H∞ control, µ−synthesis,

sliding mode control and LQ-based optimization.

In recent years, model predictive control (MPC) which

is an important control strategy, has been intensively ap-
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plied to linear systems, nonlinear systems and hybrid sys-

tems [5] [6] [7] [8]. In general, systems in the process

industry are inherently nonlinear, although linear models are

widely used to solve control problems. In these case, linear

models are obviously not adequate to describe the process

dynamics and nonlinear models have to be used. This moti-

vates the use of nonlinear model predictive control. NMPC

is especially suited for the control of nonlinear multivariable

systems subject to input and state constraints [9] [10]. The

basic idea of NMPC is to solve at each time instant a finite

horizon optimal control problem for the current state. The

first part of the resulting open loop optimal control input is

applied to the system until the next sampling instant, at which

the finite horizon optimal control problem is solved again for

the new state. Repeated application of this strategy results

in a feedback law. However, the feedback law of NMPC

does not naturally guarantee closed loop stability. The quasi-

infinite horizon NMPC scheme in [7], which optimizes on-

line an objective functional consisting of a finite horizon cost

and a terminal cost subject to system dynamics, input con-

straints and an additional terminal state inequality constraint,

successfully solves the stability problem of NMPC.

This paper mainly focuses on idle speed control problem

of SI engine. The system model of the engine idle speed

belongs to nonlinear model; Meanwhile, there inevitably

exist input constraints (the spark advance angle is bounded

to avoid knock (too much advance) and misfire (too little

advance)) and state constraints (in order to avoid manifold

pressure rising too much and to limit the range for safety

reasons) in the system. Therefore, we utilize the quasi-infinite

horizon NMPC methodology to deal with the idle speed

control problem in this paper.

The paper is organized as follows. Section II gives the

nonlinear model of engine idle speed system involving input

and state constrains. Section III introduces the main idea

of quasi-infinite horizon NMPC, which can deal with the

problem of nonlinear and system constraints at the same time

guaranteeing the asymptotic stability of the closed-loop sys-

tem. And then gives the solving procedure for the algorithm

of quasi-infinite horizon NMPC. Section IV translates the

engine idle speed control problem into optimization problem

with constraints, both analysis and simulation results are

given and discussed in Subsection IV-B.

II. PROBLEM STATEMENT

In this section, a nonlinear hybrid model of a 4-stroke 4-

cylinder spark ignition (SI) engine for idle speed control is

briefly presented. Figure 1 shows the interactions between
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the three main subsystems which compose the engine: the

intake manifold, the cylinders and the power-train.
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Fig. 1. The engine blocks

The pressure p of the intake manifold depends on the

throttle valve angle α and on the crankshaft revolution speed

n. The manifold pressure determines the mass of air-fuel

mixture m loaded by the cylinders. In each stroke of the 4-

stroke engine cycle, the cylinders evolution is described in

terms of the crankshaft angle θ , which defines the location of

the piston within the given stroke. The torque T generated

by the cylinders depends on both the mass and the spark

ignition time. Finally, the powertrain dynamics, controlled

by the generated torque T , is subject to the sum of load

torques Tl and depends on the position of the clutch. The

gear is supposed to be in idle position.

The intake manifold is subject to the following dynamics:

ṗ(t) = ap fout(p(t),n(t))+bpS(α(t)) (1)

where p is the manifold pressure (mbar) and n is crankshaft

revolution speed (Revolutions Per Minute (RPM)), ap and

bp are the manifold dynamic parameters, fout represents the

air flow rate, S stands for the equivalent throttle area. And

the air flow rate fout is a function of crankshaft revolution

speed n and the manifold pressure p

fout(p(t),n(t)) = (Gnpn(t)+Onp)p(t)+Gnnn(t)+Onn (2)

where Gnp,Onp,Gnn and Onn are the air flow rate generation

parameters. The equivalent throttle area S is described in

terms of the throttle valve angle α as follows

S(α) = asα
2 +bsα + cs (3)

where as,bs and cs are throttle angle / surface conversion pa-

rameters. Meanwhile, the manifold pressure and the throttle

valve angle should be controlled in a certain range to avoid

manifold pressure rising too much for safety reasons [1].

0o ≤ α ≤ 5o (4a)

0 ≤ p ≤ 1000 mbar (4b)

In a four-stroke gasoline engine, torque is generated by a

piston when it reaches the highest position in the cylinder and

the air-fuel mix entrapped is ignited. In this model, torque is

assumed constant during the entire expansion stroke. Each

transition occurs when the piston reaches one of the dead

centers. Engine torque is expressed either with complex

polynomials or look-up tables that cover almost every engine

speed and manifold pressure range. In our application, since

engine speed is limited to a range, we have a limited torque

range and therefore we can simplify the model substantially:

T = cmm+ c2θs (5a)

m = Km p (5b)

let c1 = cmKm, and then

T = c1 p+ c2θs (6)

where c1 and c2 are constant, θs is the spark advance

angle at the end of intake stroke, corresponding to a bottom

dead center. We consider the spark advance angle θs as the

deviation from optimal spark advance, given as a function

of the engine working point. The spark advance angle is

bounded to avoid knock (too much advance) and misfire (too

little advance);

00 ≤ θs ≤ 200 (7)

For example, θs = 00 means that spark coils are programmed

to provide the spark at the angular position corresponding to

the optimal spark advance.

Finally, the crankshaft model describes the evolution of the

crankshaft speed n. When the clutch is in the open position

the two segments of the driveline are disconnected, and the

power-train dynamics is given by [1]:

ṅ(t) = an1n(t)+bn1(Tg(t)−Tl(t)) (8a)

θ̇(t) = kcn(t) (8b)

where θ is the crankshaft angle. In four-cylinder four-stroke

engine only one cylinder can be in any one stroke, so only

one cylinder is producing torque. Hence, we assume that

θ ∈ [0,180]. Tl is the load torque acting on the crankshaft,

expressed in Nm, and Tl ∈ [0,12]Nm. Tg = T −Tp represents

the effective torque generated by the engine in Nm, Tp stands

for the loss of generated torque due both to pumping and

friction. Because the loss torque is very little comparing to

load torque, we suppose Tp = 0 [11]. And then we will get

Tg = T . Furthermore, kc is the crankshaft angle gain in (8).

The dynamic parameters involved in the revolution speed

equations are

an1 = −30B/πJeq1, bn1 = 30/πJeq1, (9)

where Jeq1 and B denote the inertial momentum and the

viscous friction coefficient of the segment of the power-train

from the crankshaft to the clutch.

When the clutch is in the close position, the two segments

of the driveline are connected, and the power-train dynamics

are:

ṅ(t) = an2n(t)+bn2(Tg(t)−Tl(t)) (10a)

θ̇(t) = kcn(t) (10b)

where

an2 = −30B/πJeq2, bn2 = 30/πJeq2. (11)
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similarly, Jeq2 denotes the viscous friction coefficient of the

segment of the power-train from the crankshaft to the gear.

From (8) and (10), it is very clearly that system parameters

have changed when the clutch is in different state (open or

close).

According to (1), (8) and (10), the nonlinear system model

of engine idle speed are following

ṗ = apGnpnp+apOnp p+apGnnn+bpasα
2 (12a)

+bpbsα +bpcs +apOnn,

ṅ = anin+bnic1 p+bnic2θs −bniw, i = 1,2 (12b)

θ̇ = kcn. (12c)

where ani = −30B/πJeqi,bni = 30/πJeqi, i = 1,2 come from

(9) and (11), and w := Tp +Tl , we regard the Tp and Tl as a

variable w.

In this paper, our control problem is: to design a controller

in order to engine speed as close as possible to a certain value

(ne = 800RPM) when the clutch state changes, meanwhile,

the control input constraints (4a) and (7) and the state

constraints (4b) should be satisfied. The control inputs are the

throttle valve angle and the spark advance angle; the states

are engine speed, manifold pressure and crankshaft angle.

III. QUASI-INFINITE HORIZON NMPC

In this section, a brief summary of quasi-infinite horizon

NMPC is given [7] [12].

A. Problem Setup

We consider the following time-invariant discrete-time

nonlinear system

x(k +1) = f (x(k),u(k)), x(0) = x0, (13)

where x(k) ∈ R
n is state vector, u(k) ∈ R

m is input vector at

the discrete-time instant k ∈ Z+ and f : R
n ×R

m → R
n is a

nonlinear function.

x(k) ∈ X, u(k) ∈ U, ∀k ≥ 0. (14)

where X denotes the set of feasible states, U denotes the set

of feasible control input values. We suppose the system states

are completely measurable and the system model is precise

known, meanwhile, don’t consider external disturbance.

It is assumed in this paper that

(A1) f : R
n×R

m →R
n is twice continuously differentiable

and f (0,0) = 0. Thus, 0∈R
n is an equilibrium of the system.

(A2) U ∈ R
m is compact, convex , X ∈ R

n is connected.

The point (0,0) is contained in the interior of X×U.

Assumption f (0,0) = 0 is not very restrictive, since if

f (xs,us) = 0, we can always shift the origin of the system

to (xs,us).
In the following, we describe the problem setup for the

quasi-infinite horizon nonlinear predictive control scheme

introduced in [7] [13].

Problem 1: Find

min
ū(·)

J(x(k), ū(·)) (15)

with

J(x(k), ū(·)) =
k+N−1

∑
i=k

x̄T (i)Qx̄(i)+ ūT (i)Rū(i)

+x̄T (k +N)Px̄(k +N).

subject to

x̄(i+1) = f (x̄(i), ū(i)), x̄(k;x(k),k) = x(k), (16a)

ū(i) ∈ U, i ∈ {k, . . . ,k +N −1}, (16b)

x̄(i;x(k),k) ∈ X, i ∈ {k, . . . ,k +N −1}, (16c)

x̄(k +N;x(k),k) ∈ Ω ⊆ X, (16d)

where (x̄(k), ū(k)) indicate that the predicted values need not

and will not be the same as the actual values. x̄(i;x(k),k)
is the predicted trajectory of (13) starting from the actual

state x(k) at time k and driven by a given open-loop input

function ū. N is a finite prediction horizon, (for simplicity of

exposition, the control and prediction horizons are chosen to

have identical values in this paper), Q ∈R
n×n and R ∈R

m×m

denote positive definite and symmetric weighting matrices.

They are tuning parameters to achieve the desired perfor-

mance. The positive definite and symmetric matrix P ∈R
n×n

will be determined. The addition constraint (16d) is referred

to as terminal inequality constraint that will force the states

at the end of the finite prediction horizon to be in some

neighborhood Ω of the origin, referred to as the terminal

region, which will be introduced Subsection III-B.

Now we are able to state the asymptotic stability result of

the closed-loop system [12].

Theorem 1: To the nonlinear system (13), suppose that

(a) assumptions A1-A2 are satisfied;

(b) Kx ∈ U, for all x ∈ Ω, the linear feedback controller

respects the input constraints in Ω;

(c) the open-loop optimal control problem described by

Problem 1 is feasible at time k = 0.

Not considering external perturbation and model errors,

(i) the open-loop optimal control problem is feasible at

each time k ≥ 0.

(ii) the closed-loop system is asymptotic stability.

B. The Terminal Region

The terminal region Ω will be chosen such that it is

invariant for the nonlinear system controlled by a local

state feedback. We consider the Jacobian linearization of the

system(13) at the origin

x(k +1) = Ax(k)+Bu(k) (17)

If (17) is stabilizable, then a linear state feedback u = Kx

can be determined such that Ak := A+BK is asymptotically

stable. For such a given K, we can state the following lemma.

Lemma 1: Suppose that the Jacobian linearization of the

system (13) at the origin is stable. Then,

(a) the discrete Lyapunov equation

AT
k PAk −P+κQ∗ = 0
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admits a unique positive definite and symmetric solution P,

where κ > 1 is a constant, Q∗ = Q+KT RK ∈Rn×n is positive

definite and symmetric.

(b) there exists a constant α ∈ (0,∞) specifying a neigh-

borhood Ω of the origin in the form of

Ω := {x(k) ∈ X|xT (k)Px(k) ≤ α}, (18)

such that

(i) Ω ⊆ X, i.e., the state constraints are satisfied in Ω,

(ii) Kx ∈ U, for all x ∈ Ω, i.e., the linear feedback

controller respects the input constraints in Ω.

(iii) For all x ∈ Ω, xT Px satisfies the inequation in the

following

xT (k +1)Px(k +1)− xT (k)Px(k) ≤−xT (k)[Q+KT RK]x(k)

then Ω is a terminal region of the nonlinear system (13),

u(k) = Kx(k) and xT (k)Px(k) are the terminal controller and

the terminal penalty function, respectively.

C. Solving Procedure

The specific algorithm of quasi-infinite horizon NMPC is

following

Step 1 calculate a terminal penalty matrix P and a terminal

region Ω using (17) off-line such that inequality constraint

(16d) holds true and the input constraints (16b) and state

constraints (16c) are satisfied (see [7]).

Step 2 at a discrete time instant k, solve on-line the

optimal problem (15) satisfying (16), according to the current

measured variables x(k) and the nonlinear discrete model of

(12). Only the first element of the computed optimal control

sequence ū(i) ∈ U, i ∈ {k, . . . ,k + N − 1} is applied to the

system (12).

Step 3 at the next discrete-time instant k+1, get new state

value x(k +1) and return to step 2 to repeat the procedure.

IV. APPLICATION TO ENGINE IDLE SPEED CONTROL

In this section, we apply the suggested quasi-infinite

horizon NMPC approach to the engine idle speed control.

Considering the parameters of system (12) under different

states of the clutch (open and close), the controller consists

of controller C1 and controller C2 [14] [15]. In every case,

only one controller is active. If the the clutch is in the open,

the output of the controller C1 is activated; If the clutch is

in the close, the output of the controller C2 is activated.

C =

{

C1 if Jeqi = 1kg ·m2

C2 if Jeqi = 0.1kg ·m2
(19)

where C1 and C2 are controllers of the system (12), based

the quasi-infinite horizon NMPC approach.

At each instant k, the controller solves the optimal control

problem(15) according to current manifold pressure and

crankshaft speed, to predict the future optimal engine throttle

angle and spark advance angle. The first element of the

obtained optimal control sequence as input is applied to the

system (12) until the next sampling instant k + 1, at which

repeat above the process to find new control sequence for

replacing last input, according to new measure states. Our

control goal is to maintain the engine speed at a reference

value ne = 800RPM.

A. Solving the Terminal Region and Terminal Penalty Matrix

For the simulation, parameters of model (12) take the

following values [1]:

ap = −1.935×107Pa ·kg−1,bp = 4.515×109Pa · s−1m−2

Onn = 5.55×10−4kg · s−1,as = 1.87×10−7m2deg−2

Gnn = −1.39×10−6kg · s−1RPM−1,bs = 1.92−7m2deg−1

Onp = −7.78×10−9kg · s−1Pa−1,cs = 6.143×10−6m2

Gnp = 1.50×10−10kg · s−1Pa−1RPM−1,kc = 6rad ·RMP−1

c1 = 0.0426Nm ·mbar−1,c2 = −0.0548Nm ·deg−1

When Jeqi = 1kg ·m2, then

ani = −0.153kg ·m2s−1,bni = 9.554RPM · s−1Nm−1

When Jeqi = 0.1kg ·m2, then

ani = −1.53kg ·m2s−1,bni = 95.54RPM · s−1 Nm−1

In order to determine a terminal penalty matrix P and

a terminal region Ω for Problem 1, the model (12) is

linearized, discretized and normalized at system equilibrium

point ne = 800RPM, pe = 300mbar,αe = 3.450,θse = 5.750.

The sampling time is 0.01s, and then we get

x(k +1) = Aix(k)+Buiu(k)+Bdid(k), i = 1,2 (20)

where state variables, control input variables and distur-

bance variables are normalized.

x := [x1 x2 x3]
T =

[

p− pe

pe

n−ne

ne

θ −θe

θe

]T

(21a)

u := [u1 u2]
T =

[

α −αe

αe

θs −θse

θse

]T

(21b)

d :=
w−we

we

(21c)

Equation (20) satisfies input constraints and state con-

straints as following

0−ue

ue

≤ u ≤
umax −ue

ue

(22a)

0− xe

xe

≤ x ≤
xmax − xe

xe

(22b)

As the disturbances in this paper are generally not mea-

sured (for example the air conditioning system), there are

not disturbances in the predictive model.

Now, we reconsider the system (12). In order to reduce the

stability error of engine speed and control energy of throttle

angle, the weighting matrices Q and R in objective function

(15) are chosen as

R =

(

100 0

0 1

)

, Q =





1 0 0

0 10 0

0 0 1
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We find that the terminal region Ω1 of C1 and Ω2 of C2 are

Ω1 = {x ∈ R
3|xT P1x ≤ 95.9},Ω2 = {x ∈ R

3|xT P2x ≤ 46.8}

where terminal penalty matrix respectively are

P1 =





0.0292 0.5146 0.0284

0.5146 68.2894 4.1089

0.0284 4.1089 0.4803





P2 =





0.3013 3.2953 0.2860

3.2953 40.56 3.751

0.2860 3.751 0.4757





B. Simulation Results

In this section, some simulation results are reported. We

assume that the clutch pedal, initially pressed, is released at

the instant t = 1s without the external disturbance. The effect

of the clutch state (open and close) on the revolution speed

of powertrain is shown in figure 2. It is clearly seen that the

powertrain speed can almost keep a constant (it is possible

that there is a narrow range fluctuation in actual operation)

when clutch is in the open position; but, the speed reduces

sharply when clutch is in the close position, which may cause

engine stall. And then it takes about 3 second to reach stable

speed value.
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Fig. 2. revolution speed of the engine and state of the clutch

According to the quasi-infinite horizon NMPC method-

ology above, we design controller C1 and C2. When the

clutch is open, we use the C1 to control the nonlinear system

(12); when the clutch is close, we use the C2 to control

the nonlinear system (12) such that the engine speed can

maintain the reference value ne = 800RPM. The predictive

horizon N is 10, initial speed n0 = 300RPM, the simulation

time is 2.5s.

Now, we suppose that the clutch pedal, initially pressed,

is released at the instant t = 1s, without external disturbance.

The closed-loop trajectories of engine NMPC in the idle

speed mode are shown in figure 3 and figure 4.

As shown in figure 3 and figure 4, although the engine

initial speed is very low, but it quickly reaches the reference
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Fig. 3. The trajectories of engine speed and throttle angle.
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Fig. 4. The trajectories of manifold pressure and spark advance.

point within 1.7s under the operation of C1 and C2. It can

be seen that the input constraints (4a) and (7) and state

constraint (4b) are not violated.

Finally, we observe the performance of the closed-loop

system when adding some external disturbance. In general,

the load torque disturbances are caused by the air con-

ditioning system and the steering wheel servo-mechanism,

etc. So let the disturbances Tl = 6Nm and Tl = 12Nm

act on the engine crankshaft respectively, during the time

from 2s to 3s. The trajectories of closed-loop system with

disturbance are shown in figure 5 and figure 6. When the

scope of disturbance torque isn’t very large, the engine speed

decreases a certain extent value, but the system quickly goes

back to operation point. When the disturbance reaches the

maximal value, engine speed decreases to 580RPM and keep

a period time, after the clutch close, the engine speed returns

to ideal value. The system can always operate normally with

the maximal disturbance.

In many vehicles, the idle speed is actually controlled with

a PID controller. But, there is huge fluctuation in the engine
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Fig. 5. NMPC of the engine idle speed with Tl = 6Nm
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Fig. 6. NMPC of the engine idle speed with Tl = 12Nm

idle speed, due to the system nonlinearity and the lagging

of control action. Representative simulation results from [3]

are shown in figure 7. Therefore, it is very difficult to obtain

good control effect to PID controller. In this paper, significant

improvements in terms of idle speed fluctuation and fuel

consumption have been achieved with respect to the MPC

controller.

V. CONCLUSIONS

The idle speed control in automotive design is a chal-

lenging problem that has been the subject of extensive

investigation. In this paper, we focus on 4-cylinder 4-stroke

of SI engine system and translate the engine idle speed

control problem into optimization problem with input and

state constraints. The controller designed using the quasi-

infinite horizon NMPC methodology can maintain engine

speed as close as possible to the reference value despite

change of clutch state and load torque disturbances. The

simulation results show that the approach is an effective and

promising for the engine idle speed control.
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Fig. 7. The trajectories of the engine idle speed with PID
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[7] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonliner model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[8] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, pp.
789–814, 2000.

[9] T. Raff, S. Huber, K. Nagy, Zoltan, and F. Allgöwer, “Definition and
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